Aprendizaje de programación apoyado por el modelo social abierto del estudiante

Main Article Content

Vinicius Hartmann Ferreira http://orcid.org/0000-0002-8270-5236 Eliseo Reategui http://orcid.org/0000-0002-5025-9710

Resumen

Este artículo presenta la implementación del Modelo Social Abierto del Estudiante en el entorno de aprendizaje virtual de una asignatura introductoria a la programación informática en educación superior. El Modelo Social Abierto del Estudiante presenta al estudiante, de forma visual e interactiva, una representación de su desempeño y el de sus compañeros, permitiéndole así comparar, evaluar y reflexionar sobre su propio desempeño. Considerando que las disciplinas introductorias a la programación tienen una alta tasa de fracaso y abandono, el objetivo del estudio fue investigar cómo el andamiaje metacognitivo proporcionado por la interacción con el Modelo Social Abierto del Estudiante podría contribuir al proceso de aprendizaje. Para lograr este objetivo, se llevó a cabo un experimento de enfoque cuasi-cuantitativo en el que participaron 40 estudiantes durante un semestre. Los resultados permitieron observar que los estudiantes utilizaron el Modelo Social Abierto del Estudiante para evaluar y monitorear su propio desempeño, identificar a los colegas a quienes podrían brindar o solicitar ayuda y organizar sus estudios. Sin embargo, no fue posible observar cambios en la conciencia metacognitiva de los estudiantes al comparar los resultados de la prueba previa y posterior. Así, se concluyó que los estudiantes que ya cuentan con procesos metacognitivos bien desarrollados y saben usarlos en el proceso de aprendizaje pueden beneficiarse más del uso del Modelo Social Abierto del Estudiante.

Article Details

Sección
Artículos / Articles

Citas

Al-Shanfari L., Demmans Epp C., & Baber C. (2017). Evaluating the Effect of Uncertainty Visualisation in Open Learner Models on Students’ Metacognitive Skills. In: André E., Baker R., Hu X., Rodrigo M., & du Boulay B. (Eds), Artificial Intelligence in Education. AIED 2017 (pp. 15-27). Lecture Notes in Computer Science, 10331. Springer,
Cham. https://doi.org/10.1007/978-3-319-61425-0_2

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning on introductory programming performance. Proceedings of First International Workshop on Computing Education Research, 81-86. https://doi.org/10.1145/1089786.1089794

Brusilovsky P., Somyürek S., Guerra J., Hosseini R., & Zadorozhny V. (2015). The Value of Social: Comparing Open Student Modeling and Open Social Student Modeling. In: Ricci F., Bontcheva K., Conlan O., Lawless S. (Eds), User Modeling, Adaptation and Personalization. UMAP 2015 (pp. 44-55). Lecture Notes in Computer Science, 9146. Springer, Cham. https://doi.org/10.1007/978-3-319-20267-9_4

Brusilovsky, P., Somyürek, S., Guerra, J., Hosseini, R., Zadorozhny, V., & Durlach, P. J. (2016). Open Social Student Modeling for Personalized Learning. IEEE Transactions on Emerging Topics in Computing, 4 (3), 450-461. https://doi.org/10.1109/TETC.2015.2501243

Bull, S., & Kay, J. (2007). Student Models that Invite the Learner. In The SMILI: Open Learner Modelling Framework. I. J. Artificial Intelligence in Education, 17, 89-120.

Bull S., & Kay J. (2013). Open Learner Models as Drivers for Metacognitive Processes. In: Azevedo R., Aleven V. (Eds), International Handbook of Metacognition and Learning Technologies (pp. 349-365). Springer International Handbooks of Education, 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5546-3_23

Festinger, L. (1954). A Theory of Social Comparison Processes. Human Relations, 7(2), 117–140. https://doi.org/10.1177/001872675400700202

Figueiredo, J., & García-Peñalvo, J. F. (2018). Building Skills in Introductory Programming. Proceedings of the 6th International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2018) (5 pages). Ed. ACM, New York, NY, USA. https://doi.org/10.1145/3284179.3284190

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34 (10), 906-911. https://doi.org/10.1037/0003-066X.34.10.906

Gama, C. A. (2004). Integrating Metacognition Instruction in Interactive Learning Environments. PhD Thesis, University of Sussex. Disponível em https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413355

Gomes, A., & Mendes, A. (2014). A teacher's view about introductory programming teaching and learning: Difficulties, strategies and motivations. Proceedings of IEEE Frontiers in Education Conference (FIE), Madrid, 1-8. https://doi.org/10.1109/FIE.2014.7044086

Guerra, J., Hosseini, R., Somyurek, S., & Brusilovsky , P. (2016). An Intelligent Interface for Learning Content: Combining an Open Learner Model and Social Comparison to Support Self-Regulated Learning and Engagement. Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI ’16). Association for Computing Machinery, New York, NY, USA, 152-163. https://doi.org/10.1145/2856767.285678

Hooshyar D., Pedaste M., Saks K., Leijen Ä., Bardone E. & Wang M. (2020). Open learner models in supporting self-regulated learning in higher education: A systematic literature review, Computers & Education, In-Press. https://doi.org/10.1016/j.compedu.2020.103878.

Hsiao, IH., Bakalov, F., Brusilovsky, P., & König-Ries, B. (2011) Open Social Student Modeling: Visualizing Student Models with Parallel IntrospectiveViews. In: Konstan J.A., Conejo R., Marzo J.L., Oliver N. (Eds) User Modeling, Adaption and Personalization. UMAP 2011(pp. 171-182). Lecture Notes in Computer Science, 6787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22362-4_15

Luckin, R., & Hammerton, L. Getting to Know Me: Helping Learners Understand Their Own Learning Needs through Metacognitive Scaffolding. In: Cerri, S.A., Gouardères, G., & Paraguaçu, F. (Eds) (2002). Intelligent Tutoring Systems. ITS (pp.759-771) . Lecture Notes in Computer Science, 2363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47987-2_76

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2019). A Systematic Literature Review on Teaching and Learning Introductory Programming in Higher Education. IEEE Transactions on Education, 62 (2), 77-90. https://doi.org/10.1109/TE.2018.2864133

Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In: Boekaerts, M., Pintrich, P. R., & Zeidner, M. (Eds.). Handbook of self-regulation (pp. 451–502). San Diego, CA: Academic. https://doi.org/10.1016/B978-012109890-2/50043-3

Robins, A., Rountree, J., & Rountree, N. (2003) Learning and Teaching Programming: A Review and Discussion. Computer Science Education, 13 (2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19 (4), 460-75. https://doi.org/10.1006/ceps.1994.1033

Tobias, S., & Everson, H. T. (2009). The importance of knowing what you know: A knowledge monitoring framework for studying metacognition in education. In: Hacker, D. J., Dunlosky, J. & Graesser, A. C. (Eds.). The educational psychology series. Handbook of metacognition in education (pp. 107–127). Routledge/Taylor & Francis Group. Disponível em https://psycnet.apa.org/record/2010-06038-007

Watson, C., & Li, F. W. B. (2014) Failure rates in introductory programming revisited. In: Proceedings of Innovation And Technology In Computer Science Education (ITiCSE) (pp. 39-44). New York: ACM. https://doi.org/10.1145/2591708.2591749