Effect of Science Students Interactions with Augmented Reality Virtual Labs for Spatial Visualization Development

Authors

DOI:

https://doi.org/10.17398/1695-288X.20.2.29

Keywords:

Technology Education, Simulated Environment, Science Instruction, Hands on Science, Visual Perception

Abstract

The main scope of this article is to highlight the potential of student interactions in Science teaching, from educational resources in augmented reality, and its effect on the development of spatial visualization skills. Therefore, it presents a contextualization about Science teaching, the use of real laboratories, as well as its limitations, presenting as an alternative the use of educational resources in augmented reality with the support of mobile devices. The solution was tested in activities that complement the Science teaching and learning process with basic education students in Brazil. It aimed to investigate whether students' interactions with educational resources in augmented reality can contribute to the development of spatial visualization skills. The methodological procedures were organized in a quasi-experimental approach, through activities foreseen in a test protocol carried out with 208 participants divided into two groups: Control (n=96 subjects) and Experimental (n=112 subjects). In general terms, the results of this research point to contributions arising from the interactions of students with educational resources in augmented reality, both for the development of spatial visualization skills, as well as for the observation of the phenomenon and understanding of the abstract concepts associated with it, formulation and testing of hypotheses, as well as conclusions from the situations experienced.

Author Biographies

  • Fabrício Herpich, Federal University of Rio Grande do Sul (Brazil)

    Ph.D. in Informatics in Education of the Federal University of Rio Grande do Sul.

  • Patrícia Fernanda da Silva, Federal University of Rio Grande do Sul (Brazil)

    Possui graduação em Ciências Exatas pelo Centro Universitário Univates (2010); Mestre em Ensino de Ciências Exatas (2013); Doutora em Informática na Educação na Universidade Federal do Rio Grande do Sul (2017) e Pós-Doutoranda pela Universidade Federal do Rio Grande do Sul (2017). Atualmente participa como membro do Comitê Gestor da Comissão Especial de Informática na Educação (SBC), desenvolve atividades de pós-doutorado atuando como professora colaboradora junto ao Programa de Pós-Graduação em Informática na Educação (PPGIE) da Universidade Federal do Rio Grande do Sul. Desempenha atividades no Projeto AVATAR (Ambiente Virtual de Aprendizagem e Trabalho Acadêmico Remoto) e também no Projeto AVAECIM (Ambiente Virtual de Aprendizagem Experimental em Ciências e Matemática) onde pesquisa sobre a eficácia do uso de ambientes virtuais, laboratórios reais e virtuais por adolescentes nas disciplinas de Ciências e Matemática.

  • Liane Margarida Rockenbach Tarouco, Federal University of Rio Grande do Sul (Brazil)

    Graduação em Licenciatura em Física pela Universidade Federal do Rio Grande do Sul (1970), mestrado em Ciências da Computação pela Universidade Federal do Rio Grande do Sul (1976) e doutorado em Engenharia Elétrica/Sistema Digitais pela Universidade de São Paulo (1990). Atualmente é professora titular da Universidade Federal do Rio Grande do Sul. Atua junto ao Programa de Pós-Graduação em Informática na Educação onde assumiu em 2017 a função de Coordenadora e onde atua como docente e desenvolvendo pesquisa em mundos virtuais imersivos e mobile learning. Desenvolve atividade de pesquisa na área de Ciência da Computação, com ênfase em Redes de Computadores. 

References

Alexander, B. et al. (2019). EDUCAUSE Horizon Report: 2019 Higher Education Edition. Louisville: EDUCASE. Recuperado a partir de https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf

Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 1-23. doi: 10.1016/j.compedu.2019.103647

AVATAR. (2021). Página oficial do Projeto AVATAR - Ambiente Virtual de Aprendizagem e Trabalho Acadêmico Remoto.
Porto Alegre: Universidade Federal do Rio Grande do Sul. Recuperado a partir de http://www.ufrgs.br/avatar

Batista, R. F. M., & Silva, C. C. (2018). A abordagem histórico-investigativa no ensino de Ciências. Estudos Avançados, 32(94), 97-110. 2018 doi: 10.1590/s0103-40142018.3294.0008

Burkett, V. C., & Smith, C. (2016). Simulated vs. Hands-on Laboratory Position Paper. Electronic Journal of Science Education, 20(9), 8-24. Recuperado a partir de http://ejse.southwestern.edu/article/view/16255

Chang, J. S. et al. (2017). Evaluating the effect of tangible virtual reality on spatial perspective taking ability. 5th Symposium on Spatial User Interaction. doi: 10.1145/3131277.3132171

Città, G. et al. (2019). The effects of mental rotation on computational thinking. Computers & Education, 141. doi: 10.1016/j.compedu.2019.103613

Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school students’ understanding of gas properties. Computers & Education, 85, 59-73. doi: 10.1016/j.compedu.2015.02.007

Herpich, F. (2019). Recursos educacionais em realidade aumentada para o desenvolvimento da habilidade de visualização espacial em física. (Dissertação de doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil).

Herpich, F., Rossi, T., Tibola, L., Ferreira, V., & Tarouco, L. (2017). Learning Principles of Electricity Through Experiencing in Virtual Worlds. In D. Beck, Communications In D. Beck, C. Allison, L. C. Morgado, J. Pirker, F. Khosmood, J. Richter, & C. Gütl (Eds.), Computer And Information Science - Immersive Learning Research Network (ILRN), 725, (pp. 229-242). Springer.

Hinojosa, A. J. (2015) Investigations on the impact of spatial ability and scientific reasoning of student comprehension in physics, State Assessment Test, and STEM courses. [Tese de Doutorado, University of Texas at Arlington]. Recuperado a partir de http://hdl.handle.net/10106/25121

Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. doi: 10.1111/j.1365-2729.2006.00180.x

Ibáñez, M., Di Serio, Á., Villarán, D., & Delgado-Kloos, C. (2019). Impact of Visuospatial Abilities on Perceived Enjoyment of Students toward an AR-Simulation System in a Physics Course. 2019 IEEE Global Engineering Education Conference (EDUCON), 995-998. doi: 10.1109/EDUCON.2019.8725185

Irwanto, Saputro, A. D., Rohaeti, E., & Prodjosantoso, A. K. (2019). Using Inquiry-Based Laboratory Instruction to Improve Critical Thinking and Scientific Process Skills among Preservice Elementary Teachers. Eurasian Journal of Educational Research, 80, 151-170. doi: 10.14689/ejer.2019.80.8

Kapici, H. O., Akcay, H., & Jong, T. (2019). Using Hands-On and Virtual Laboratories Alone or Together-Which Works Better for Acquiring Knowledge and Skills?. Journal Of Science Education And Technology, 28(3), 231-250. doi: 10.1007/s10956-018-9762-0

Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on What? The Relative Effectiveness of Physical Versus Virtual Materials in an Engineering Design Project by Middle School Children. Journal of Research in Science Teaching, 44(1), 183–203. doi: 10.1002/tea.20152

Kozhevnikov, M., Hegarty, M., & Mayer, R. (2002). Spatial Abilities in Problem Solving in Kinematics. In M. Anderson, M., Meyer, B., & Olivier P. (Eds.), Diagrammatic Representation and Reasoning (pp. 155-171), Springer.

Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579. doi:10.1080/15326900701399897

Kozhevnikov, M., & Thornton, R. (2006). Real-Time Data Display, Spatial Visualization Ability, and Learning Force and Motion Concepts. Journal of Science Education and Technology, 15(1), 111-132. doi:10.1007/s10956-006-0361-0

Maison, Darmaji, Astalini, Kurniawan, D. A., & Indrawati, P. S. (2019). Science Process Skills and Motivation. Humanities & Social Sciences Reviews, 7(5), 48-56. doi: 10.18510/hssr.2019.756

Farrell, S. et al. (2015). A profile of the spatial visualisation abilities of first year engineering and science students. 6th Research in Engineering Education Symposium (REES 2015). 13-15. doi: 10.21427/D75226

Masril, Hidayati, & Darvina, Y. (2019). Implementation of virtual laboratory through discovery learning to improve student’s physics competence in Senior High School. Journal of Physics: Conference Series, 1185, 1-8. doi: 10.1088/1742-6596/1185/1/012114

Mayer, R. E. (Ed.). (2009). Multimedia Learning (2nd ed.). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511811678

Meltzer, D. E. (2005). Relation Between Students’ Problem-Solving Performance and Representational Format. American Journal of Physics, 73(5), 463-478. doi: 10.1119/1.1862636

Nagy-Kondor, R. (2016). Spatial Ability: Measurement and Development. Visual-Spatial Ability in STEM Education, 35-58. doi: 10.1007/978-3-319-44385-0_3

Nunes, F., et al. (2014). Laboratório Virtual de Química: uma ferramenta de estímulo à prática de exercícios baseada no Mundo Virtual OpenSim. XXV Simpósio Brasileiro de Informática na Educação, 712-721. doi: 10.5753/cbie.sbie.2014.712

Pallrand, G. J., & Seeber, F. (1984). Spatial Ability and Achievement in Introductory Physics. Journal of Research in Science Teaching, 21(5), 507-516. doi: 10.1002/tea.3660210508

Peffer, M. E., Beckler, M. L., Schunn, C., Renken, M., & Revak, A. (2015). Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning. PLOS ONE, 10(3), 1-14. doi: 10.1371/journal.pone.0120638

Prieto, G. (2010). Análisis psicométrico de un test informatizado de Visualización Espacial. In M. C. R. A. Joly & C. T. Reppold (Eds.), Estudos de Testes Informatizados para Avaliação Psicológica. (pp. 141-162). São Paulo: Casa do Psicólogo.

Quintero, E., Salinas, P., Gonzáles-Mendívil, & E., Ramírez, H. (2015). Augmented Reality app for Calculus: A Proposal for the Development of Spatial Visualization. Procedia Computer Science, 75, 301-305. doi: 10.1016/j.procs.2015.12.251

Scalise, K. et al. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research In Science Teaching, 48(9), 1050-1078. doi: 10.1002/tea.20437

Silva, D. V., Joly, M. C. R. A., & Prieto, G. (2011). Relação entre habilidades espaciais e desempenho no ensino médio. Revista Polis E Psique, 1(1), 61-79. doi: 10.22456/2238-152X.20371

Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning And Individual Differences, 26, 20-29. doi: 10.1016/j.lindif.2013.03.010

Tarouco, L. M. R. (2019). Inovação Pedagógica com Tecnologia: mundos imersivos e agentes conversacionais. Revista Novas Tecnologias na Educação (RENOTE), 17(2), 92-108. doi: 10.22456/1679-1916.96590

Vieira, L. B., Fernandes, G. W. R., Maldaner, O. A., & Massena, E. P. (2018). Situación de estudio: ¿qué se estan publicando en eventos y revistas del área de enseñanza de las ciencias? Ensaio Pesquisa em Educação em Ciências, 20, 1-29. doi: 10.1590/1983-21172018200101

Yilmaz, R., Baydas, O., Karakus, T., & Goktas, Y. (2015). An examination of interactions in a three-dimensional virtual world. Computers & Education, 88, 256-267. doi: 10.1016/j.compedu.2015.06.002

Published

2021-12-08

Issue

Section

Articles

How to Cite

Effect of Science Students Interactions with Augmented Reality Virtual Labs for Spatial Visualization Development. (2021). Latin American Journal of Educational Technology - RELATEC, 20(2), 29-47. https://doi.org/10.17398/1695-288X.20.2.29

Similar Articles

11-20 of 169

You may also start an advanced similarity search for this article.