Avaliação de um Modelo de Maturidade para Adoção de Learning Analytics em Instituições de Ensino Superior
DOI:
https://doi.org/10.17398/1695-288X.19.2.101Palavras-chave:
Educação Superior, Learning Analytics, Políticas Educacionais, Questionários, ModelosResumo
Learning Analytics (LA) visa à análise dos dados gerados por estudantes e professores em ambientes online a fim de promover ações que conduzam à melhoria do ensino e aprendizagem. Os resultados dessas análises podem ajudar os professores a conhecer os processos de estudo empregados pelos seus estudantes, além de poder auxiliar na verificação e correção de atividades e práticas pedagógicas. Para os estudantes, LA pode ajudar na reflexão e autorregulação da aprendizagem. No entanto, apesar de seus benefícios, as instituições têm encontrado dificuldades na sua adoção. Nesse contexto, um instrumento que pode apoiar o emprego de LA é o Modelo de Maturidade (MM), o qual tem sido utilizado em diferentes áreas de conhecimento a fim de indicar um roteiro de melhoria para as organizações. Diante do exposto, este artigo visa apresentar os resultados da avaliação de um MM proposto para apoiar a adoção de LA em Instituições de Ensino Superior, denominado MMALA. A avaliação, focada na composição do modelo, foi realizada por meio de questionário dirigido a pesquisadores e profissionais da área de LA. Após a realização de análises, tanto qualitativa quanto quantitativa, foram identificadas sugestões de aprimoramento para o modelo proposto e este foi validado, embasando a continuação do seu desenvolvimento.
Downloads
Referências
Arnold, K., & Pistilli, M. (2012). Course signals at Purdue: using learning analytics to increase student success. Proceedings of the International Conference on Learning Analytics and Knowledge - LAK '12, New York, NY, USA, 267-270. https://doi.org/10.1145/2567574.2567621
Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing maturity models for IT management – A Procedure Model and its Application. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599-009-0044-5
CMMI. (2010). CMMI para Desenvolvimento (v1.3). Software Eng. Institute, Carnegie Mellon.
Dawson, S., Joksimovic, S., Poquet, S., & Siemens, G. (2019). Increasing the Impact of Learning Analytics. Proceedings of the International Conference on Learning Analytics and Knowledge - LAK’19, Tempe, Arizona, USA, 446-455. https://doi.org/10.1145/3303772.3303784
DAMA International. (2009). The DAMA guide to the data management body of knowledge (DAMA-DMBOK), Tech. Publications.
DMM. (2014). Data management maturity model – 1.0 version. CMMI Institute.
Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4 (5/6), 304-317. https://doi.org/10.1504/IJTEL.2012.051816
Freitas, E. L. S. X., Souza, F. F., & Garcia, V. C. (2019). Learning Analytics em Ação: Uma Revisão Sistemática de Literatura. Anais do Simpósio Brasileiro de Informática na Educação - SBIE, Brasília. https://doi.org/10.5753/cbie.sbie.2019.1581
Freitas, E. L. S. X., Souza, F. F., Garcia, V. C., Mello, R. F., & Gasevic, D. (2020). Towards a Maturity Model for Learning Analytics Adoption: An Overview of its Levels and Areas. Proceedings of the International Conference on Advanced Learning Technologies (ICALT), Tartu, Estonia, 2020. https://doi.org/10.1109/ICALT49669.2020.00059
Gallego, F. O., & Corchuelo, R. (2020). An encoder–decoder approach to mine conditions for engineering textual data. Engineering Applications of Artificial Intelligence, 91, 103568. https://doi.org/10.1016/j.engappai.2020.103568
Gewerc, A., Rodríguez-Groba, A., & Martínez-Piñeiro, E. (2016). Academic Social Networks and Learning Analytics to Explore Self-Regulated Learning: a Case Study. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 11(3), 159-166. https://doi.org/10.1109/RITA.2016.2589483
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman Editora.
Halper, F., & Stodder, D. (2014). TDWI analytics maturity model guide. TDWI Research. Recuperado a partir de https://tdwi.org/pages/maturity-model/analytics-maturity-model-assessment-tool.
Hiles, A. (2010). The Definitive Handbook of Business Continuity Management, 3ª Ed., Wiley.
Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2011). The 2011 Horizon Report. Austin, Texas, The New Media Consortium. Recuperado a partir de https://library.educause.edu/-/media/files/library/2011/2/hr2011-pdf.pdf.
Keystone Strategy. (2016). Data & analytics maturity model & business impact. White Paper. Recuperado a partir de https://info.microsoft.com/rs/157-GQE-382/images/EN-CNTNT-SQL-Data%20Analytics%20Maturity%20Model-en-us.pdf
Kitto, K., Cross, S., Waters, Z., & Lupton, M. (2015). Learning analytics beyond the LMS: the connected learning analytics toolkit. Proceedings of the International Conference on Learning Analytics And Knowledge - LAK '15. New York, NY, USA, 11-15. https://doi.org/10.1145/2723576.2723627.
Li, M., & Smidts, C. (2003). A ranking of software engineering measures based on expert opinion. IEEE Transactions on Software Engineering, 29(9), 811–824. https://doi.org/10.1109/TSE.2003.1232286
Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing Pedagogical Action: Aligning Learning Analytics With Learning Design. American Behavioral Scientist, 57(10), 1439-1459. https://doi.org/10.1177/0002764213479367.
Pedhazur, E. J., & Schmelkin, L. P. (2013). Measurement, design, and analysis: An integrated approach. Psychology Press.
Rau, M. A., Aleven, V., & Rummel, N. (2014). Sequencing Sense-Making and Fluency-Building Support for Connection Making between Multiple Graphical Representations. En J. Polman, E. Kyza, D. K. O'Neill, I. Tabak, W. R. Penuel, A. S. Jurow, K. O'Connor, T. Lee, L. D'Amico (Eds.). Learning and Becoming in Practice: The International Conference of the Learning Sciences (ICLS), (2, 977-981).
Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning Analytics in a data-rich context. Computers in Human Behavior, 47, 157-167. https://doi.org/10.1016/j.chb.2014.05.038.
Tlili, A., Essalmi, F., Jemni, M., & Kinshuk. (2015). An educational game for teaching computer architecture: Evaluation using learning analytics. Proceedings of the International Conference on Information & Communication Technology and Accessibility (ICTA), Marrakech, 1-6. https://doi.org/10.1109/ICTA.2015.7426881.
Tsai, Y. S., & Gašević, D. (2017). The State of Learning Analytics in Europe – Executive Summary – SHEILA. Recuperado a partir de http://sheilaproject.eu/2017/04/18/the-state-of-learning-analytics-in-europe-executive-summary.
Tsai, Y., Moreno-Marcos, P., Jivet, I., Scheffel, M, Tammets, K., Kollom, K., & Gasevic, D. (2018). The SHEILA framework: informing institutional strategies and policy processes of learning analytics. Journal of Learning Analytics, 5(3), 5-20. https://doi.org/10.18608/jla.2018.53.2
União Europeia. (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Towards a thriving data-driven economy, SWD(2014) 214 final. Brussels. Recuperado a partir de https://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=6216.
Yassine, S., Kadry, S., & Sicilia, M. A. (2016). A framework for learning analytics in moodle for assessing course outcomes. Proceedings of the IEEE Global Engineering Education Conference (EDUCON), Abu Dhabi, 261-266. https://doi.org/10.1109/EDUCON.2016.7474563.
Downloads
Publicado
Edição
Secção
Licença
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
1. Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 International (CC BY-NC-ND), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
3. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).