Inteligência Artificial na educação: Big data, caixas pretas e solucionismo tecnológico

Autores

DOI:

https://doi.org/10.17398/1695-288X.21.1.129

Palavras-chave:

Aprendizado aprimorado por tecnologia, Inteligência artificial, Análise de aprendizagem, Tecnologias persuasivas, Contextos educacionais

Resumo

O uso da tecnologia digital está permeando e transformando todos os sistemas sociais, e a educação não é exceção. Na última década, o desenvolvimento da Inteligência Artificial deu um novo impulso à esperança de dotar os sistemas educativos de soluções “eficazes” e mais personalizadas de ensino e aprendizagem. Educadores e pesquisadores da área da educação e formuladores de políticas, em geral, carecem do conhecimento e da experiência necessários para compreender a lógica subjacente a esses novos sistemas. Além disso, não temos evidências baseadas em pesquisas suficientes para entender completamente as implicações para o desenvolvimento dos alunos tanto do uso extensivo de telas quanto da crescente dependência de algoritmos em ambientes educacionais. Este artigo, destinado a educadores, acadêmicos da área de educação e formuladores de políticas, apresenta primeiramente os conceitos de “Big Data”, Inteligência Artificial (IA), algoritmos de aprendizado de máquina e como eles são apresentados e implantados como “caixas pretas”, como bem como seu possível impacto na educação. Em seguida, enfoca os discursos educacionais subjacentes que historicamente têm visto as tecnologias de informação e comunicação como uma panacéia para resolver problemas educacionais, apontando a necessidade de analisar não apenas suas vantagens, mas também seus possíveis efeitos negativos. Termina com uma breve exploração de possíveis cenários e conclusões futuras.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Juana María Sancho-Gil, Universidade de Barcelona (Espanha)

    Professora Emérita de Tecnologias Educacionais da Universidade de Barcelona. Ela coordenou o grupo de pesquisa -ESBRINA- Subjectividades, Visualidades e Ambientes Educacionais Contemporâneos: http://esbrina.eu, e REUNI + D - Rede Universitária de Pesquisa e Inovação Educacional: http://reunid.eu. Ele também é membro do INDAGA'T - Teaching innovation group to promote enquiry: http://www.ub.edu/indagat/.
    Ela coordenou ou participou de 50 projetos de pesquisa e publicou como autora ou coordenadora mais de 35 livros, 167 capítulos de livros e 276 artigos na mídia nacional e internacional relacionados à inovação e melhoria na educação, treinamento de professores e o impacto das tecnologias de informação e comunicação na educação. Ela já deu mais de 180 palestras convidadas e apresentou 192 comunicações em conferências nacionais e internacionais.

Referências

Alter, A. (2017). Irresistible: The Rise of Addictive Technology and the Business of Keeping. Penguin Press.

Banks, J. A., Au, K. H., Ball, A.F., Bell, P., Gordon, E. W., Gutiérrez, K. D., Heath, S. B., Lee, C. D., Lee, Y., Mahiri, J.,

Nasir, N. S., Valdés, G., Zhou, M. (2007). Learning in and out of school in diverse environments. Life-long, Life-wide, Life-deep. The LIFE Center for Multicultural Education, University of Washington. http://lifeslc.org/docs/Banks_etal-LIFE-Diversity-Report.pdf

Bernstein, B. (1970). Education cannot compensate for society. New society, 26, 344-345.

Bogost, I. (2015, January 15). The Cathedral of Computation. The Atlantic. http://www.theatlantic.com/technology/archive/2015/01/the-cathedral-ofcomputation/384300/

Buchanan, R., & McPherson, A. (2019, July 8). Education shaped by big data and Silicon Valley. Is this what we want for Australia? EduResearch Matters, https://www.aare.edu.au/blog/?p=4182

Calvet Liñán, L., & Juan Pérez, Á. A. (2015). Educational Data Mining and Learning Analytics: differences, similarities, and time evolution. RUSC. Universities and Knowledge Society Journal, 12(3), 98-112. http://dx.doi.org/10.7238/rusc.v12i3.2515

Castells, M. (1996). The Rise of the Network Society (Information Age), vol. 1. 2nd ed. Blackwell Publishers.

Chakroun, B., Miao, F., Mendes, V., Domiter, A., Fan, H., Kharkova, I., Holmes, W., Orr, D., Jermol, M., Issroff, K., Park, J., Holmes, K., Crompton, H., Portales, P., Orlic, D., & Rodriguez, S. (2019). Artificial Intelligence for Sustainable Development: Synthesis Report, Mobile Learning Week 2019. UNESCO

Cohen, D. K. (1988). Educational Technology and School Organization. In R. S. Nickerson & P. P. Zodhiates (Eds.), Technology in Education: Looking Toward 2020 (pp. 231264). Hillsdale, NJ: Lawrence Erlbaum Associates, Pu.

Cuban, L. (1986). Teachers and Machines: The Classroom Use of Technology Since 1920. Teachers College.

Cuban, L. (1993). How teachers taught: constancy and change in American classrooms, 1890-1990. Teachers College Press.

Delors, J. (1998). Learning: The treasure within. Unesco.

Desmurget, M. (2020). La fábrica de cretinos digitales. Península.

Dick, S. (2019). Artificial Intelligence. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.92fe150c

Dickson, B. (2021, January 28). Demystifying deep learning. Techtalks. https://bdtechtalks.com/2021/01/28/deep-learning-explainer/

European Commission (2021). Regulatory framework proposal on Artificial Intelligence. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

Finn, E. (2017). What Algorithms Want. Imagination in the Age of Computing. The MIT Press. https://doi.org/10.7551/mitpress/9780262035927.001.0001

Fogg, B. J. (2003). Persuasive Technology: Using Computers to Change what We Think and Do. Morgan Kaufmann Publishers.

Fogg, B. J. (2009). A Behavior Model for Persuasive Design. Persuasive’09, April 26-29.

Claremont, CA. https://doi.org/10.1145/1541948.1541999

Gates, B. (1996). The road ahead. Viking.

Goldstein, H. (2018). Measurement and Evaluation Issues with PISA. In L. Volante (Ed.), The PISA Effect on Global Educational Governance (pp. 49-58). Routledge.

Google (2018). How Google Fights Piracy. https://www.blog.google/documents/25/GO806_Google_FightsPiracy_eReader_fi nal.pdf

Hartong, S., & Förschler, A. (2019). Opening the black box of data-based school monitoring: Data infrastructures, flows and practices in state education agencies. Big Data & Society. https://doi.org/10.1177/2053951719853311

Hilbert, M., & López, P. (2011). The World’s Technological Capacity to Store, Communicate, and Compute Information. Science, 332(6025), 60-65. https://doi.org/10.1126/science.1200970

Isaak, J., & Hanna, M. J. (2018). User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protection. Computer, 51(8), 56-59. https://doi.org/10.1109/MC.2018.3191268.

Knox, J., Williamson, B., & Bayne, S. (2020). Machine behaviourism: Future visions of ‘learnification’ and ‘datafication’ across humans and digital technologies. Learning, Media and Technology, 45(1), 31-45. https://doi.org/10.1080/17439884.2019.1623251

Lahitou, J. (2018, August 18). Silicon Valley Parents Choose Low & No Tech Schools. What About Your Kid’s School? The Good Man Project. https://goodmenproject.com/uncategorized/silicon-valley-parents-choose-low-notech-schools-thats-probably-not-the-tech-policy-at-your-kids-school/

Lennon, T. (2016, August 11). Babylon’s ancient clay tablets made more census than today’s computers. The Daily Telegraph. https://www.dailytelegraph.com.au/news/babylons-ancient-clay-tablets-mademore-census-than-todays-computers/newsstory/3f76510db70c6bfd1185192a2e90badc

Lupton, D., & Williamson, B. (2017). The datafied child: The dataveillance of children and implications for their rights. New Media & Society, 19(5), 780-794. https://doi.org/10.1177/1461444816686328

MacDonald, B. (1993). Micromundos y mundos reales. Una agenda para la evaluación. Comunicación y Pedagogía-Infodidac. October, 31-41.

McClintock, R. O. (1993). El alcance de las posibilidades pedagógicas. In R. O. McClintock, G. Vázquez, M. J. Streibel (Coord.), Comunicación, tecnología y diseños de instrucción: la construcción del conocimiento escolar y el uso de los ordenadores (pp. 104-125). CIDE-MEC.

Morozov, E. (2013). To save everything, click here: The folly of technological solutionism. Public Affairs.

Muhammad, S.S., Dey, B.L., & Weerakkody, V. (2018). Analysis of Factors that Influence

Customers’ Willingness to Leave Big Data Digital Footprints on Social Media: A Systematic Review of Literature. Information Systems Frontiers, 20(3), 559-576. https://doi.org/10.1007/s10796-017-9802-y

Negroponte, N. (1995). Being Digital. Alfred A. Knopf.

Noble, D. D. (1991). The Classroom Arsenal: Military Research, Information Technology, and Public Education. The Falmer Press.

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group, USA.

OECD-CERI (2006). Personalising Education. OECD. http://dx.doi.org/10.1787/9789264036604-en

OECD (2015). Students, Computers and Learning: Making the Connection, PISA. OECD. http://dx.doi.org/10.1787/9789264239555-en

OECD (2019). OECD Principles on Artificial Intelligence. https://www.oecd.org/goingdigital/ai/principles/

Papert, S. (1993). The Children's machine. Basic Books.

Peirano, M. (2019). El enemigo conoce el sistema. Manipulación de ideas, personas, influencias después de la economía de la atención. Debate.

Perelman, L. J. (1992). Schools Out. Hyperlearning, the New Technology, and the end of Education. William Morrow and Company, Inc.

Phillips, D. C. (2014). Research in the Hard Sciences, and in Very Hard “Softer” Domains. Educational Researcher, 43(1), 9-11. https://doi.org/10.3102/0013189X13520293

Pigott, T. D., Tocci, C., Ryan, A. M., & Galliher, A. (2021). Quality of Research Evidence in Education: How Do We Know? Review of Research in Education, 45(1), vii-xii. https://doi.org/10.3102/0091732X211001824

Pinar Saygin, A., Cicekli, I. & Akman, V. (2000). Turing Test: 50 Years Later. Minds and Machines 10, 463-518. https://doi.org/10.1023/A:1011288000451

Popkewitz, T. (2018, September 6). The Paradox of Research: The Good Intentions of Inclusion that Excludes and Abjects. ECER 2018. Bolzano, Italy. https://cutt.ly/pk6dwqQ

Ray S., & Saeed M. (2018). Applications of Educational Data Mining and Learning Analytics Tools in Handling Big Data in Higher Education. In M. Alani, H. Tawfik., M. Saeed & O. Anya (eds), Applications of Big Data Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-76472-6_7

Rittel, H. W. J., & Webber, M. M. (1984). Planning Problems are Wicked Problems. Developments. In N. Gross (ed.),

Design Methodology (pp. 135-144). John Wiley and Sons.

Saettler, P. (1990). The Evolution of American Educational Technology. Libraries Unlimited, Inc.

Sancho-Gil, J. M. (1995). Looking for the 'Right' Answers or Raising the 'Right' Questions? A Dialogical Approach to Automating Instructional Design. In R. D. Tennyson & A. E. Barron (Ed.), Automating Instructional Design: Computer-Based Development and Delivery Tools (pp. 79-99). Springer-Verlag. NATO ASI Series F: Computer and Systems Sciences, Vol. 140.

Sancho-Gil, J. M. (1998). Enfoques y funciones de las nuevas tecnologías para la información y la educación: lo que es no es lo que parece. In J. de Pablos & J. Jiménez (Eds.), Nuevas Tecnologías, Comunicación Audiovisual y Educación (pp. 71-102). Cedecs.

Sancho-Gil, J. M. (2020). Digital technology as a trigger for learning promises and realities. Digital Education Review, 37, 195-207. https://doi.org/10.1344/der.2020.37.191-203

Sancho-Gil, J. M., Rivera-Vargas, P. & Miño-Puigcercós, R (2020). Moving beyond the predictable failure of Ed-Techinitiatives. Learning, Media and Technology, 45(1), 61-75. https://doi.org/10.1080/17439884.2019.1666873

Sancho-Gil, J. M. (2021, 23 febrero). No abandonamos, vosotros nos abandonasteis. El Diario de la Educación. https://cutt.ly/ZIMWpME

Greg Thompson (2017) Computer adaptive testing, big data and algorithmic approaches to education, British Journal of Sociology of Education, 38:6, 827-840, DOI: 10.1080/01425692.2016.1158640

Trendacosta, K. (2020, December 10). Unfiltered: How YouTube’s Content ID Discourages Fair Use and Dictates What We See Online. Electronic Frontier Foundation.

https://www.eff.org/wp/unfiltered-how-youtubes-content-id-discourages-fair-useand-dictates-what-we-see-online

Turkle, S. (1995). Life on the Screen: Identity in the Age of the Internet. Shuster and Shuster.

Warzel, Ch. (2019, July 2). Welcome to the K-12 Surveillance State. Is tech really the solution to student safety? New York Times. https://www.nytimes.com/2019/07/02/opinion/surveillance-state-schools.html

Weizenbaum, J. (1966). ELIZA--A Computer Program for the Study of Natural Language Communication Between Man and Machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168

Weller, C. (2018, February 18). Silicon Valley parents are raising their kids tech-free — and it should be a red flag. Buisiness Insider. https://www.businessinsider.com/siliconvalley-parents-raising-their-kids-tech-free-red-flag-2018-2

Williamson, B. (2017). Big Data in Education: The Digital Future of Learning, Policy and Practice. SAGE Publications. https://doi.org/10.4135/9781529714920

Williams, J. (2018). Stand out of our Light: Freedom and Resistance in the Attention Economy. Cambridge University Press. https://doi.org/10.1017/9781108453004

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power: Barack Obama's books of 2019. Profile books.

Publicado

2022-01-27

Edição

Secção

Artículos / Articles

Como Citar

Inteligência Artificial na educação: Big data, caixas pretas e solucionismo tecnológico. (2022). Revista Latinoamericana De Tecnología Educativa - RELATEC, 21(1), 129-145. https://doi.org/10.17398/1695-288X.21.1.129

Artigos Similares

1-10 de 484

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.