DIY robotics: computational thinking based patterns to improve problem solving

Authors

DOI:

https://doi.org/10.17398/1695-288X.17.2.129

Keywords:

Computational Thinking, Problem solving, Robotic, Educational Technology, Programming Languages

Abstract

The objective is to propose a teaching strategy for programming and robotics, to facilitate the acquisition of an effective computational strategy for the resolution of complex problems. For this teaching, a "maker"; approach has been chosen, to facilitate the transfer of knowledge to real contexts. The proposed literature about the cognitive structure of computational thinking has been studied to establish the bases of the study. A course in robotics has been taught, insisting on the cognitive processes of this thinking that are commonly used in problem solving (abstraction, data processing, creation of an algorithm) in each step of the resolution, and encouraging the use of a computational strategy, using the own processes, those not employed in problem solving (decomposition of the problem, automation, parallelism, simulation). To measure it, digital tests have been created based on the multiple-complex-systems approach, used in PISA 2012. The results indicate that computational thinking is applied more easily to the execution of the algorithm than to the representation of the problem. This finding allows us to establish a programming learning process that facilitates the development of computational thinking, focusing first on applying that strategy to the creation of the algorithm and then to the representation of the problem.

Downloads

Download data is not yet available.

Author Biography

  • Beatriz Ortega-Ruipérez, Universidad Autónoma de Madrid

    Academic background: PhD in Psychology from the Autonomous University of Madrid. Master's degree in education and training technologies at the same university. Degree in psychology.

    Experience: Designer and developer of educational tales and video games in companies in the sector (G4M3 Studios, Smile and Learn). Responsible for Pedagogy in the Department of Education of BQ, worked in the pedagogical lines development of the department and monitoring of its evaluation. Professor in the Robotics, 3D Printing and Programming Expert (UNIR), Master's Degree in Teacher Training, in pedagogical innovation and TIC innovation (URJC), and the Master's Degree in Technology and Educational Innovation (FMI, attached to UCJC).
    She is currently in UNIR in the master's degree in educational technology and digital skills and in the master's degree in special education. And in URJC, in the Master's Degree in Teacher Training, in didactic and educational research subjects. Participates in the Laboratory of Information Technologies in Education (LITE-URJC).

    Lines of research: learning of programming and development of computational thinking, computer learning as a strategy for problem solving, educational robotics, learning with digital educational applications, innovation in teacher training, improvement of executive functions in special education students with technology.

References

Asenjo, E. y Asensio, M. (en prensa). The force under suspicion: building a perceived interactivity scale in museums. Journal on Computing and Cultural Heritage_JOCCH

Asensio, M. y Asenjo, E. (Eds.) (2011). Lazos de Luz Azul. Museos y Tecnologías 1, 2 y 3.0. Barcelona: Editorial Universitat Oberta de Catalunya.

Brennan, K. y Resnick, M. (2012) New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 annual meeting of the American Educational Research Association. Vancouver, Canada

Chiu, T. K. F., y Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers y Education, 82, 280–291. http://dx.doi.org/10.1016/j.compedu.2014.12.001

CSTA y ISTE (2011) Computational Thinking Leadership Toolkit, First edition. Computer Science Teachers Association (CSTA) y International Society for Technology in Education (ISTE). https://goo.gl/syFwSF

Greiff, S., Wüstenberg, S., y Funke, J. (2012). Dynamic problem solving: A new assessment perspective. Applied Psychological Measurement, 36(3), 189-213. http://dx.doi.org/10.1177/0146621612439620

Herde, C. N., Wüstenberg, S., y Greiff, S. (2016). Assessment of complex problem solving: What we know and what we don’t know. Applied Measurement in Education, 29(4), 265-277. http://dx.doi.org/10.1080/08957347.2016.1209208

Hmelo-Silver, C.E. (2012) International perspectives on problem-based learning: context, cultures, challenges and adaptations. Interdisciplinary Journal of Problem-Based Learning, 6, 10-15. http://dx.doi.org/10.7771/1541-5015.1310

Holyoak, K. J. y Morrison, R. G. (Eds.)(2012) The oxford handbook of thinking and reasoning. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780199734689.001.0001

Jiménez-Rasgado, G. (2018). La programación como fuente motivadora para la construcción del conocimiento y el desarrollo de habilidades de pensamiento. International Journal of Studies in Educational Systems, 2(8), 269-278.

Kafai, Y. B. y Burke, Q. (2017) Computational Participation: Teaching Kids to Create and Connect Through Code. In P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on Computational Thinking, Educational Communications and Technology: Issues and Innovations. Springer.

Koh, K. H., Nickerson, H., Basawapatna, A., y Repenning, A. (2014, June). Early validation of computational thinking pattern analysis. In Proceedings of the 2014 conference on Innovation y technology in computer science education, 213-218. ACM. http://dx.doi.org/10.1145/2591708.2591724

Lu, Y., Bridges, E.M. y Hmelo-Silver, C.E. (2014) Problem-Based Learning. In: Sawyer, R.K. (Ed.) The Learning Sciences, pp. 298-318. N.Y.: Cambridge University Press.

Lye, S. Y., y Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. http://dx.doi.org/10.1016/j.chb.2014.09.012

Marais, C., y Bradshaw, K. (2015). Problem-solving ability of first year CS students: A case study and intervention. In Proceedings of the 44th Conference of the Southern African Computers Lecturers' Association.

Mayer, RE. y Estrella, G. (2014). Benefits of emotional design in multimedia instruction. Learning and Instruction, 33, 12-18. http://dx.doi.org/10.1016/j.learninstruc.2014.02.004

Moreno-Leon, J., Robles, G., y Roman-Gonzalez, M. (2015). Dr. Scratch: Análisis Automático de Proyectos Scratch para Evaluar y Fomentar el Pensamiento Computacional. Revista de Educación a Distancia, (46).

Muñoz, R., Barcelos, T. S., Villarroel, R., y Silveira, I. F. (2017). Using Scratch to Support Programming Fundamentals. International Journal on Computational Thinking, 1(1), 68-78. http://dx.doi.org/10.14210/ijcthink.v1.n1.p68

National Research Council (2010) Report of a Workshop on the Scope and Nature of Computational Thinking. Washington, DC: The National Academies Press

OECD (2010). PISA 2012 field trial: problem solving framework. Paris: OECD

Ortega-Ruipérez, B. (2018) Pensamiento computacional y resolución de problemas (Tesis doctoral). Universidad Autónoma de Madrid, Madrid. https://goo.gl/ortqFs

Park, S. Y., Song, K. S., y Kim, S. (2015). EEG Analysis for Computational Thinking based Education Effect on the Learners’Cognitive Load. Proceedings of the Applied Computer and Applied Computational Science (ACACOS’15), 23-25. Kuala Lumpur, Malaysia.

Ritchhart, R. y Perkins, D. N. (2005) Learning to Think: The Challenges of Teaching Thinking. En Holyoak, K. J. y Morrison, R. G. (Eds.) The Cambridge Handbook of Thinking and Reasoning, pp. 775-802. Cambridge University Press.

Robles, G., Moreno-León, J., Aivaloglou, E., y Hermans, F. (2017). Software clones in Scratch projects: On the presence of copy-and-paste in Computational Thinking learning. In Software Clones (IWSC), 2017 IEEE 11th International Workshop on (pp. 1-7). Austria.

Sáez-López, J. M. y Cózar-Gutiérrez, R. (2017) Pensamiento computacional y programación visual por bloques en el aula de Primaria. Educar, 53(1), 129-146. http://dx.doi.org/10.5565/rev/educar.841

Santacana, J. Asensio, M. y Llonch, N. (Eds.) (2018). App, arqueología & m-learning. Reconstruir, restituir interpretar y evaluar APP. Barcelona: Rafael Dalmau.

Selby, C. y Woollard, J. (2013) Computational thinking: the developing definition. University of Southampton (E-prints). https://goo.gl/sKdd9G

Shute, V. J., Sun, C., y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Stahl, G., Koschmann, T. y Suthers, D. (2014). Computer-Supported Collaborative Learning. In: Sawyer, R.K. (Ed.) The Learning Sciences, pp. 479-500. N.Y.: Cambridge University Press.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and instruction, 4(4), 295-312.

Valverde-Berrocoso, J.; Fernández-Sánchez, M. y Garrido-Arroyo, M. (2015) El pensamiento computacional y las nuevas ecologías del aprendizaje. Revista de Educación a Distancia. (46) http://dx.doi.org/10.6018/red/46/3

Wing, J. M. (2006) Computational thinking. Communications of the ACM, 49, 33-35. http://dx.doi.org/10.1145/1118178.1118215

Wing, J. M. (2008) Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366, 3717-3725. The Royal Society.

Wing, J. M. (2011) Research Notebook: Computational Thinking: What and Why? The Link. Pittsburgh, PA: Carneige Mellon. Recuperado de https://www.cs.cmu.edu/link/research-notebook-computational-thinkingwhat-and-why

Wing, J. M. (2014). Computational thinking benefits society. Social Issues in Computing. New York: Academic Press.

Wing, J.M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. http://dx.doi.org/10.17471/2499-4324/922

Zapata-Ros, M. (2015) Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia. Universidad de Murcia. http://dx.doi.org/10.6018/red/46/4

Downloads

Published

2018-12-11

Issue

Section

Articles

How to Cite

DIY robotics: computational thinking based patterns to improve problem solving. (2018). Latin American Journal of Educational Technology - RELATEC, 17(2), 129-143. https://doi.org/10.17398/1695-288X.17.2.129

Similar Articles

1-10 of 499

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>