Fortaleciendo habilidades de pensamiento computacional en Educación Infantil: Experiencia de aprendizaje mediante interfaces tangible y gráfica

Autores/as

DOI:

https://doi.org/10.17398/1695-288X.18.2.133

Palabras clave:

Pensamiento Computacional, Programación, Robótica, Educación Infantil

Resumen

El desarrollo e integración de la tecnología digital, en el contexto social actual, hace necesario el diseño de propuestas educativas que contribuyan a fortalecer los procesos de enseñanza-aprendizaje a través de recursos y materiales didácticos que aporten dinamismo, flexibilidad e innovación. Un enfoque que está ganando popularidad, en el escenario internacional, consiste en abordar la enseñanza de la tecnología, la programación y el pensamiento computacional desde primeras etapas escolares. En este trabajo se presentan algunos de los resultados alcanzados mediante el desarrollo de una experiencia formativa sobre aprendizaje del pensamiento computacional en educación infantil. El estudio corresponde a un diseño cuasi-experimental con medidas pretest-postest, sin grupo control. La muestra de participantes fue de 44 estudiantes y 2 profesores, de un colegio concertado, en Salamanca, España, durante el periodo 2017-2018. Las actividades consistieron en la resolución de problemas con retos de programación utilizando una interfaz tangible y otra gráfica. Los instrumentos utilizados fueron una rúbrica, cuestionarios y diario de campo. Los resultados generales muestran la existencia de diferencias entre el pretest y el postest, lo que indica que se generó un avance en referencia al aprendizaje del pensamiento computacional mediante la característica explorada. Además, se evidencia una aceptación positiva de las actividades entre estudiantes y profesores. El estudio representa una valoración inicial sobre la adquisición de habilidades de pensamiento computacional y programación en etapas educativas tempranas.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Yen Air Caballero-Gonzalez, Universidad de Salamanca (España)

    Facultad de Educación. Paseo de Canalejas, 169. 37008 Salamanca

    Tfn. Facultad: 923 29 46 30 Operadora: 923 29 45 00 (ext. 3410) Despacho: 670 682 736

    Grupo de Investigación GITE-USAL

    Directora de Grupo: Ana García-Valcárcel Muñoz-Repiso

  • Ana García-Valcárcel Muñoz-Repiso, Universidad de Salamanca (España)

    Facultad de Educación. Paseo de Canalejas, 169. 37008 Salamanca
    Tfn. Facultad: 923 29 46 30 Operadora: 923 29 45 00 (ext. 3410) Despacho: 670 682 736

Referencias

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., y Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), pp. 47–57.

Basogain-Olabe, X., Olabe-Basogain, M. Á., y Olabe-Basogain, J. C. (2015). Pensamiento Computacional a través de la Programación: Paradigma de Aprendizaje. Red, 46(6), pp.1–33. https://doi.org/10.6018/red/46/6

Bers,M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York: Teachers College Press

Bers, M.U. (2010). The TangibleK Robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2). https://bit.ly/2RZ3B11

Bers, M. U. (2018). Coding, playgrounds and literacy in early childhood education: The development of KIBO robotics and ScratchJr. Presentada IEEE Global Engineering Education Conference, EDUCON, Tenerife, Spain., 2094–2102. Resumen recuperado de https://doi.org/10.1109/EDUCON.2018.8363498

Bers, M. U., Flannery, L., Kazakoff, E. R., y Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., González-González, C., y Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. https://doi.org/10.1016/j.compedu.2019.04.013

Brennan, K., y Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (Vol. 1, p. 25).

Bruni, F., y Nisdeo, M. (2017). Educational robots and children’s imagery: A preliminary investigation in the first year of primary school. Research on Education and Media, 9(1), 37-44. https://doi.org/cxnq

Campbell, D., y Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Buenos Aires: Amorrortu.

Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100. https://doi.org/10.1016/j.ijcci.2018.06.005

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., y Eltoukhy, M.M. (2017). Assessing Elementary students’ computational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001

Cheng, Y. W., Sun, P. C., y Chen, N. S. (2018). The essential applications of educational robot: Requirement
analysis from the perspectives of experts, researchers and instructors. Computers & education, 126, 399-416. https://doi.org/10.1016/j.compedu.2018.07.020

Chiara, M., Lieto, D., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., … y Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16–23. https://doi.org/10.1016/j.chb.2017.01.018

Cejka, E., Rogers, C., y Portsmore, M. (2006). Kindergarten robotics: using robotics to motivate math,science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711–722.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Academic Press. 2da. Edición.

Elkin, M., Sullivan, A., y Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153–169.

García-Peñalvo, F. J., Hernández-García, Á., Conde-González, M. Á., Fidalgo-Blanco, Á., S., y Lacleta, M. L., Alier-Forment, M., Llorens-Largo, F., y Iglesias-Pradas, S. (2015). Mirando hacia el futuro: Ecosistemas tecnológicos de aprendizaje basados en servicios. Recuperado de http://rua.ua.es/dspace/handle/10045/51427

García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., y Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). Salamanca, Spain, November 2-4, 2016. New York: ACM. https://doi.org/10.1145/3012430.3012491

Muñoz-Repiso, A. G. V., & González, Y. A. C. (2019). Robótica para desarrollar el pensamiento computacional en Educación Infantil. Comunicar: Revista científica iberoamericana de comunicación y educación, (59), 63-72. https://doi.org/10.3916/C59-2019-06

González, Y. A. C., & Muñoz-Repiso, A. G. V. (2017, November). Educational robotics for the formation of programming skills and computational thinking in childish. In 2017 International Symposium on Computers in Education (SIIE) (pp. 1-5). IEEE. https://doi.org/10.1109/SIIE.2017.8259652

González, Y. A. C., & Muñoz-Repiso, A. G. V. (2018, October). A robotics-based approach to foster programming skills and computational thinking: Pilot experience in the classroom of early childhood education. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 41-45). ACM. https://doi.org/10.1145/3284179.3284188

Hernández Sampieri, R., Fernández-Collado. C., y Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers and Human Behavior, 52, 200-210. https://doi.org/10.1016/j.chb.2015.05.047.

Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. https://doi.org/cxnt

Kazakoff, E. R., y Bers, M. U. (2014). Put Your Robot in, Put Your Robot out: Sequencing through Programming Robots in Early Childhood. Journal of Educational Computing Research, 50(4), 553–573. https://doi.org/10.2190/EC.50.4.f

Kucuk, S., y Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43. http://dx.doi.org/10.1016/j.compedu.2017.04.002

Moreno, I., Muñoz, L., Serracín, J. R., Quintero, J., Pittí Patiño, K. y Quiel, J. (2012). La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías. Revista Teoría de la Educación: Educación y Cultura en la Sociedad de la Información. 13(2), 74-90. Recuperado de http://campus.usal.es/~revistas_trabajo/index.php/revistatesi/article/view/9000/9245

Olsen, W. (2004). Triangulation in social research: qualitative and quantitative methods can really be mixed. Developments in sociology, Causeway Press Ltd., 20, pp.103-118. Recuperado de https://cutt.ly/8wLEw6P

Papadakis, S., Kalogiannakis, M., y Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organization, 10(3), 187. https://doi.org/10.1504/ijmlo.2016.077867

Resnick, M., y Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D.E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.163-181). New York: Routledge.

Scaradozzi, D., Sorbi, L., Pedale, A., Valzano, M., y Vergine, C. (2015). Teaching robotics at the primary school: an innovative approach. Procedia-Social and Behavioral Sciences, 174, 3838-3846. https://doi.org/10.1016/j.sbspro.2015.01.1122

Strawhacker, A., Lee, M., y Bers, M. U. (2018). Teaching tools, teachers’ rules: exploring the impact of teaching styles on young children’s programming knowledge in ScratchJr. International Journal of Technology and Design Education, 28(2), 347–376. https://doi.org/10.1007/s10798-017-9400-9

Strawhacker, A., Sullivan, A., y Bers, M. U. (2013, June). TUI, GUI, HUI: is a bimodal interface truly worth the sum of its parts?. In Proceedings of the 12th International Conference on Interaction Design and Children (pp. 309-312). ACM.

Sullivan, A., y Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3–20. https://doi.org/10.1007/s10798-015-9304-5

Sullivan, A. A., Bers, M. U., y Mihm, C. (2017). Imagining, playing, and coding with KIBO: using robotics to foster computational thinking in young children. Siu-cheung KONG.The Education University of Hong Kong, Hong Kong, 110.

Valverde-Berrocoso, J., Fernández-Sánchez, M., y Garrido-Arroyo, M.C. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. https://doi.org/10.6018/red/46/3

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://bit.ly/2ASUK9Q

Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118

Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Red, 46, 1-47. https://doi.org/10.13140/RG.2.1.3395.8883

Descargas

Publicado

2019-12-14

Cómo citar

Fortaleciendo habilidades de pensamiento computacional en Educación Infantil: Experiencia de aprendizaje mediante interfaces tangible y gráfica. (2019). Revista Latinoamericana De Tecnología Educativa - RELATEC, 18(2). https://doi.org/10.17398/1695-288X.18.2.133

Artículos similares

11-20 de 128

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a